Statistics of eigenstates near the localization transition on random regular graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Localization Transition of Random Copolymers near Selective Interfaces

In this note we consider the (de)localization transition for random directed (1 + 1)–dimensional copolymers in the proximity of an interface separating selective solvents. We derive a rigorous lower bound on the free energy. This yields a substantial improvement on the bounds from below on the critical line that were known so far. Our result implies that the critical curve does not lie below th...

متن کامل

On the asymmetry of random regular graphs and random graphs

This paper studies the symmetry of random regular graphs and random graphs. Our main result shows that for all 3 ≤ d ≤ n − 4 the random d-regular graph on n vertices almost surely has no non-trivial automorphisms. This answers an open question of N. Wormald [13].

متن کامل

Colouring Random Regular Graphs

In a previous paper we showed that a random 4-regular graph asymptotically almost surely (a.a.s.) has chromatic number 3. Here we extend the method to show that a random 6-regular graph asymptotically almost surely (a.a.s.) has chromatic number 4 and that the chromatic number of a random d-regular graph for other d between 5 and 10 inclusive is a.a.s. restricted to a range of two integer values...

متن کامل

Learning Random Regular Graphs

The family of random regular graphs is a classic topic in the realms of graph theory, combinatorics and computer science. In this paper we study the problem of learning random regular graphs from random paths. A random regular graph is generated uniformly at random and in a standard label-guided graph exploration setting, the edges incident from a node in the graph have distinct local labels. T...

متن کامل

Random strongly regular graphs?

Strongly regular graphs lie on the cusp between highly structured and unstructured. For example, there is a unique strongly regular graph with parameters (36,10,4,2), but there are 32548 non-isomorphic graphs with parameters (36,15,6,6). (The first assertion is a special case of a theorem of Shrikhande, while the second is the result of a computer search by McKay and Spence.) In the light of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2019

ISSN: 2469-9950,2469-9969

DOI: 10.1103/physrevb.99.024202